

Broadband VHF (B-VHF) Project Achievements And Follow-on Activities

Presented by Bernhard Haindl FREQUENTIS GmbH

May 1st, 2007 ICNS

Overview

- B-VHF System
- Transition Aspects and Migration Scenarios
- Achievements
- Introduction From B-VHF to B-AMC
- B-AMC Operations
- High Level B-AMC Design
- Conclusions

B-VHF System (1) - Main B-VHF Facts

- Multi-application broadband cellular system based on multicarrier technology
 - MC-CDMA for forward link (G/A)
 - OFDMA for reverse link (A/G)
- High capacity/high performance integrated voice and data link system tailored for specific aeronautical needs
 - Supporting existing and emerging applications and services
- OFDM and MC-CDMA are mature technologies
 - Proven by high-capacity bandwidth-efficient techniques, like DAB, DVB-T or W-LAN
 - COTS products are already available (MC-CDMA adopted proposal for 4G)
- Most modern and spectrum efficient technology

B-VHF System (2) - Communication Concept

Cellular Concept

- One B-VHF cell might provide coverage for several ATC sectors
- •One ATC sector might belong to several B-VHF cells

Ground station supported communications

Air-Air Communication (Voice+Data) via GS Retransmission

Ground Station (GS)

Page: 4 Version: 1.0

B-VHF System (3) - Main B-VHF Facts

B-VHF is primarily designed to use it as overlay system

 Overlay concept enables in-band transition (e.g. VHF band)

Page: 5 Version: 1.0

NBI and Sidelobe Suppression Techniques

NBI Techniques:

- Digital notch filtering only for strong interferer
 - Assumption: A/D converter with sufficient resolution
- Rx windowing in time domain
 - Slight extension of time domain signal required
 - Peak of interferer is not reduced
- Leakage compensation in frequency domain
 - Leakage effect due to DFT operation
 - Estimation and compensation of interference Requires observation subcarrier
- Sidelobe suppression techniques:
 - Objective: Minimization of interference towards legacy VHF systems
 - Tx windowing
 - Cancellation carriers

Page: 6 Version: 1.0

Transition Aspects and Migration Scenarios

- Aeronautical bands for a future aeronautical communications system
 - **VHF COM range** (118–137 MHz)
 - **VOR range** (target range: 116–118 MHz)
 - DME range (target range: 960–1024 MHz)
 - MLS range (target range: 5091–5150 MHz)
- Deployment mode of the airspace
 - B-VHF-supported airspace: B-VHF equipment is voluntary
 - B-VHF airspace: B-VHF infrastructure is mandatory:
 - NB airspace: no B-VHF system is deployed
- VHF-COM Transition: B-VHF System Deployment in the VHF COM band
 - deployment scenario is based on overlay
 - Minor adaptations on the existing system
- DME Transition: B-VHF System Deployment in the DME band
 - Deployment of a data only system in the L-band
- VHF-Transition: B-VHF System Deployment in the VHF NAV & COM band
 - partly overlay character

© B-VHF CONSORTIUM 2006 File: B-VHF ICNS2006

Cell Assignment for -75dBm with all VHF stations

Page: 8 Version: 1.0

Cell Assignment for -75dBm with en-route stations

Page: 9 Version: 1.0

BER Performance - ENR-WC Scenario

Page: 10 Version: 1.0

Conclusions

- Overlay concept and VHF in-band transition feasible
 - Theoretical considerations and simulations
 - Reduced capacity during deployment
- Multi-application System
 - operational service coverage is independent from the physical lineof-sight conditions
 - Integrated system design supports necessary QoS for all safetyrelated voice and data link services for ATS and AOC.
- Applicability in non-VHF bands with or without overlay
 - e.g DME band for ground-based aeronautical communications
- Scalability of B-VHF
 - B-VHF easily scalable (data rate/capacity ~ bandwidth)
 - Large bandwidth enables high rate/capacity aeronautical communications for additional/new applications

Introduction – From B-VHF to B-AMC

What is B-AMC?

- B-AMC: Broadband Aeronautical Multi-carrier Communications
- B-AMC is B-VHF adjusted to L-band use
- Preferable B-AMC deployment between L-band DME channels
 - ▶ B-AMC is more an "inlay" than a real overlay system
 - ▶ B-AMC deployment:
 - Without considering DME frequency planning (preferred)
 - Aligned with DME frequency planning (second choice)
 - Fall back solution: "green" L-band spectrum

■ Why B-AMC?

- New data link system for 2020 shall be implemented in L-band
- B-VHF design can be re-used for B-AMC to a large extend
 - ► For A/G communications B-AMC is based on B-VHF protocol concepts
 - For A/A communications B-AMC extends B-VHF capabilities
- B-AMC allows systematic adjustments to L-band use

B-AMC Operations

Functional Scope of B-AMC Operations

- A/G mode B-AMC inherits B-VHF capabilities
 - Centralized communication controlled by GS
 - Cellular communications concept with B-AMC cells decoupled from service operational coverage
 - Seamless service area and cell handover
 - Supports Data and Voice communications
 - B-AMC covers all A/G ATS and AOC services
- A/A mode B-AMC extends B-VHF capabilities
 - Decentralized (self-organized) direct A/A communication
 - "Communication bubbles" defined by radio range around aircraft
 - All A/A communications are based on broadcast transmissions
 - B-AMC supports A/A surveillance data link (ADS-B)
 - B-AMC covers all A/A ATS services
- Only one mode of operation at a time is supported per radio

Required Adjustments for L-Band Use

- Special L-Band Conditions
 - Interference situation and available spectrum blocks
 - High carrier frequency (attenuation, Doppler, ...)
 - L-band system shall provide data communications (voice only as option)
- Required Adjustments (B-VHF to B-AMC)
 - Duplex scheme for A/G communication
 - FDD instead of TDD Avoids large guard times
 - Use the small available channel bandwidth between DME channels
 - Relieves co-location interference situation at aircraft
 - FL access-scheme
 - OFDMA instead of MC-CDMA
 - OFDM parameters
 - Different frequency band and different interference situation
 - RF bandwidth and sub-carrier spacing have to be adjusted
 - Framing structure
 - Framing structure has to be adjusted due to FDD and adjusted OFDM parameters

High Level B-AMC Design - A/G

- Duplex Scheme and Frequency Spectrum
 - A/G communication applies FDD
 - Proposed L-band usage
 - B-AMC channel center frequencies chosen exactly between DME channel assignments
 - RL from 1040 to 1140 MHz
 - FL from 980 to 1020 MHz
 - For operation over landmass areas A/A communication in parallel to A/G communication is available
 - Complete A/A connectivity (second radio)
 - Globally available CCC
 - Proposed L-band frequency
 - CCC @ 968 MHz

Author: Frequentis

High Level B-AMC Design - A/A

- Communication Architecture
 - Decentralized communication, self-organized
 - Communication bubbles defined by radio range
 - Main communications means for surveillance and A/A data link communications: CCC
 - Additionally (future):
 High-speed point-to-point link using FDD, e.g. for ad-hoc net communication

Page: 16 Version: 1.0

High Level B-AMC Design – A/A

- Access-Scheme and Frequency Spectrum
 - Global time reference assumed available
 - A/A communication applies self-organized OFDM/TDMA
 - Proposed L-band usage
 - CCC @ 968 MHz (2,6 MHz for ENR)
 - Additional CCCs around 968 MHz (1,3 MHz for TMA and APT)
 - High-speed point-to-point links (for future use, e.g. ad-hoc nets)
 - Re-use DME spectrum (978 1140 MHz) in OPR areas
 - Re-use A/G FDD B-AMC radio with extended bandwidth
 - Pure OFDM with large bandwidth (>1 MHz)
 - Higher modulation schemes, directional antennas, and MIMO
 - Extremely high data rates

High Level B-AMC Design

Conclusions

© B-VHF CONSORTIUM 2006

File: B-VHF ICNS2006

- Proposal for A/G high level B-AMC design
 - B-AMC covers all A/G ATS and AOC services
 - B-AMC supports A/G multi-link and multi-service communications
 - Robust PHY layer tailored to combat L-band interference
 - Efficient side-lobe suppression to guarantee co-existence
 - Optimized design for data link, but voice remains an option
 - Minimized delays due to signaling frames
- Proposal for A/A high level B-AMC design
 - B-AMC covers all A/A ATS services
 - ▶ B-AMC supports A/A data link communication
 - B-AMC supports A/A surveillance (ADS-B)
 - Future option: High-speed point-to-point links (ad-hoc nets)

Page: 18

Version: 1.0

Thank you for your attention!

Any Questions?

Page: 19

Version: 1.0